Market and policy mechanisms to scale-up carbon dioxide removal

C2G side event 11 December 2019 Prof. Dr. Niklas Höhne, <u>n.hoehne@newclimate.org</u>

The challenge

Source: IPCC Special Report on Global Warming of 1.5°C

Options for CO₂ removal

Technology	Sustainable potential (GtCO ₂ /y)	2050 IPCC 1.5°C Pathways (GtCO ₂ /y)	Maturity	Duration of CO ₂ storage	Other benefits	Potential negative effects
Afforestation & reforestation (AR)	0.5-3.6	3.6 (afforestation)	Mature	Medium	Biodiversity	Food security, biodiversity
Soil carbon sequestration (SCS)	Up to 5	1-11 (all AFOLU)	Mature	Short	Fertility, water	Food security, biodiversity
Biochar	0.5-2	n/a	Mature	Medium	Fertility, water	Food security, biodiversity
Bioenergy with carbon capture and storage (BECCS)	0.5-5	0-8	Demo	Long	Energy, (CO ₂ use)	Food security, biodiversity, health
Direct air carbon capture and storage (DACCS)	0.5-5 (max 40)	n/a	Demo	Long	(CO ₂ use)	Health, energy requirements
Enhanced weathering	2-4	n/a	R&D	Very long	Soil amelioration, nutrient source	Ground water, mining, air pollution
Carbon mineralisation	?	n/a	R&D	Very long		Ground water

僌

Support options	Examples		
Investment in research	 Research grants in UK and USA 		
and innovation	 Demonstration projects in Japan, US, EU 		
Regulation and	 Removal targets (not present) 		
standards			
Economic incentives	 Tax credits (US 45Q) 		
	 Emission reduction credits (Californian low carbon fuel standard) 		
	 Carbon pricing (Norway) 		
Private	 Seed funding for start ups (mostly from philanthropy and oil 		
	companies)		
	 Voluntary contributions 		
	 Voluntary (carbon) markets 		

Example: Forest compensation

Petrol company "compensates" fuel emissions by planting trees

e.g. Australian Emission Reduction Fund

Pros

>> Forest sink is supported, which is per se a good thing

- Sives false impression that fuel emissions were neutralized. Fuel emissions need to be reduced to zero AND forests need to be enhanced
- Forest may (probably will) be cut and release captured CO₂

Petrol company "compensates" fuel emissions through direct air capture project

Pros

Support for a currently expensive technology, that may be needed in the future

- Sives false impression that fuel emissions were neutralized. Fuel emissions need to be reduced to zero AND CO2 needs to be removed
- Additional electricity need (possibly from fossil fuels)
- >> Captured CO₂ may be released later

Petrol company supports direct air capture project (not claiming to be carbon neutral)

Pros

Support for a currently expensive technology, that may be needed in the future

- May divert attention from reducing fuel use.
 Fuel emissions need to be reduced to zero AND CO₂ needs to be removed
- >> Worse to communicate than compensation

Example: Net zero target

Country/company sets net zero emissions target with full use of negative emissions (forestry and other technology)

E.g. Norway, Sweden, UK

Pros

- Objective to find cost efficient solution to zero emissions
- Supporting carbon removal, which is needed for net negative emissions

- Diverts attention from reducing emissions
- \rightarrow Captured CO₂ may be released later
- Allows for residual emissions, that may be problematic in the net negative phase

Example: Separate removal target

Country/company sets zero emissions target for fossil fuel emissions AND separate carbon removal target

Pros

- >> Clear responsibility for reducing emissions AND removals
- >> Preparing for net negative phase
- Not so relevant that captured CO2 may be released at a later date

Cons

separate short term forestry targets

E.g. many countries have

Target values need to be set in a way to provide certainty and balance

Potential ways forward

>> Treat removal options separate

- Natural removal (afforestation, reforestation, biochar and soil carbon sequestration)
- Technology removal (BECCS, DACCS, enhanced weathering and carbon mineralisation)
- Offsetting emissions by removals is risky: "Compensation" may weaken overall mitigation
 - Divert attention from reductions
 - Carbon may be released at a later date

- Support but not "compensation"
 - Provide direct financial support to start-up companies on removal technologies like BECCS, DACCS, enhanced weathering and carbon mineralisation
 - Not alternative to reductions and not compensation

Set separate carbon removal target

- Emission reduction target and separate removal target
- Governments could purchase carbon removal from service providers or require companies to do so